

Data "Wrangling"

One often needs to manipulate data prior to analysis. Tasks include reformatting, cleaning, quality assessment, and integration

Some approaches:

Writing custom scripts Manual manipulation in spreadsheets Trifacta Wrangler: <u>http://trifacta.com/products/wrangler/</u> Open Refine: <u>http://openrefine.org</u>

Specifying Table Configurations

Operands are names of database fields Each operand interpreted as a set {...} Data is either O or Q and treated differently

Three operators:

concatenation (+) cross product (x) nest (/)

Table Algebra

The operators (+,x,/) and operands (O,Q) provide an algebra for tabular visualization

Algebraic statements are mapped to **Visualizations** – trellis partitions, visual encodings **Queries** – selection, projection, group-by

In Tableau, users make statements via drag-and-drop Users specify operands NOT operators! Operators are inferred by data type (O,Q)

Nest (/) Operator

Cross-product filtered by existing records

Quarter x Month

creates 12 entries for each qtr. i.e., (Qtr1, Dec)

Quarter / Month

creates three entries per quarter based on tuples in database (not semantics)

Ordi	na	- C	Ord	ina
State	Product Type Coffee Espresso Herbal Tea			Tea
Colorado	Coffee	Espresso	nerbai Tea	l ea
Colorado	•		•	•
Florida		•	•	•
Illinois				
lowa				
Louisiana				
Massachusetts				
Missouri				
Nevada	•		•	•
New Hampshire	•	•	•	•
New Mexico	•	•	•	
New York	•	•	٠	•
Ohio	•	•	•	•
Oklahoma	•	•	•	
Oregon	•	•	•	•
Texas	٠	٠	•	
Utah	•	•	•	•
Washington	•	•	•	•
Wisconsin	•	•	•	•

Summary

Exploratory analysis may combine graphical methods, and statistics

Use questions to uncover more questions

Interaction is essential for exploring large multidimensional datasets

A2: Exploratory Data Analysis

Use Tableau to formulate & answer questions **First steps** Step 1: Pick domain & data 400 Step 2: Pose questions 350 Step 3: Profile data 300 문 250 · Iterate as needed ₹ 200 150 **Create visualizations** 100 Interact with data 50 Refine questions 2004 2006 200 Author a report Screenshots of most insightful views (10+) Include titles and captions for each view Due before class on Jan 27, 2020

Topics

Graphs and lines Selecting aspect ratio Fitting data and depicting residuals Graphical calculations Cartographic distortion

Linear scale vs. Log scale

Aspect ratio

Fill space with data Don't worry about showing zero

Aspect-ratio banking techniques

Median-Absolute-Slope

$$=$$
 median | s. | R / R

Average-Absolute-Orientation Unweighted

$$\sum_{i} \frac{|\theta_i(\alpha)|}{n} = 45^{\circ}$$

Weighted

α

$$\frac{\sum_{i} |\theta_{i}(\alpha)| l_{i}(\alpha)}{\sum_{i} l_{i}(\alpha)} = 45^{\circ}$$

Average-Absolute-Slope

 $\alpha = \text{mean} | s_i | R_x / R_y$ Has Closed Form Solution Max-Orientation-Resolution Global (over all i, j s.t. i≠j)

$$\sum_{i}\sum_{i}|\theta_{i}(\alpha)-\theta_{j}(\alpha)|^{2}$$

Local (over adjacent segments)

$$\sum_{i} | heta_i(lpha) - heta_{i+1}(lpha)|^2$$

Requires Iterative Optimization

New York Times Election 2016

2016 Electoral Map Forecast

The Upshot's forecast for the presidential race, based on the latest national and state polls. By JOSH KATZ and ADAM PEARCE UPDATED November 2, 2016

Summary

- Space is the most important visual encoding
- Geometric properties of spatial transforms support geometric reasoning
- Show data with as much resolution as possible
- Use distortions to emphasize important information