Using Space Effectively

Maneesh Agrawala

CS 448B: Visualization Winter 2020

Last Time: EDA

Data "Wrangling"

One often needs to manipulate data prior to analysis. Tasks include reformatting, cleaning, quality assessment, and integration

Some approaches:
Writing custom scripłs
Manual manipulation in spreadsheets
Trifacta Wrangler: http://trifacta.com/products/wrangler/
Open Refine: http://openrefine.org

3

Tableau

Specifying Table Configurations

Operands are names of database fields
Each operand interpreted as a set \{...\}
Data is either O or Q and treated differently
Three operators:
concatenation (+)
cross product (x)
nest (/)

6

Table Algebra

The operators (,$+ x_{l} /$) and operands (O, Q) provide an algebra for tabular visualization

Algebraic statements are mapped to Visualizations - trellis partitions, visual encodings Queries - selection, projection, group-by

In Tableau, users make statements via drag-and-drop Users specify operands NOT operators! Operators are inferred by data type (O, Q)

Table Algebra: Operands

Ordinal fields: interpret domain as a set that partitions table into rows and columns
Quarter $=\{($ Qtr 1),(Qtr2),(Qtr3),(Qtr4) $\} \rightarrow$

Qtr1	Qtr2	Qtr3	Qtr4
95892	101760	105282	98225

Quantitative fields: treat domain as single element set and encode spatially as axes
Profit $=\{($ Profit[-4 10,650] $)\} \rightarrow$

Concatenation (+) Operator

Ordered union of set interpretations

```
Quarter + Producł Type
= {(Qtr 1),(Qtr2),(Qtr3),(Qtr4)} + {(Coffee), (Espresso)}
= {(Qtr 1),(Qtr2),(Qtr3),(Qtr4),(Coffee),(Espresso)}
```

Qtr1	Qtr2	Qtr3	Qtr4	Coffee	Espresso
48	59	57	53	151	21

Profit + Sales $=\{(\operatorname{Profit}[-310,620]),($ Sales[0, 1000] $)\}$

Cross (x) Operator

Cross-product of set interpretations
Quarter x Product Type
= \{(Qtr1,Coffee), (Qtr1, Tea), (Qtr2, Coffee), (Qtr2, Tea), (Qtr3, Coffee), (Qtr3, Tea), (Qtr4, Coffee), (Qtr4,Tea) \}

Qtr 1		Qtr2		Qtr3		Qtr 4	
Coffee	Espresso	Coffee	Espresso	Coffee	Espresso	Coffee	Espresso
131	19	160	20	178	12	134	33

Product Type \times Profit =

Coffee					Espresso				
	© -			-	-	-			
0	100	200	300	400	0	100	200	300	400
Profit					Profit				

Nest (/) Operator

Cross-product filtered by existing records
Quarter x Month
creates 12 entries for each qtr. i.e., (Qtr 1, Dec)
Quarter / Month
creates three entries per quarter based on łuples in database (not semantics)

Ordinal - Ordinal

Fate	Coffee	Produ Espresso	ct Type Herbal Tea	Tea
Colorado	-	-	-	-
Connecticut	-	-	-	-
Florida	-	-	-	-
Illinois	-	-	-	-
Iowa	-	-	-	-
Louisiana	-	-	-	
Massachusetts	-	-	-	-
Missouri	-	-	\bullet	\bullet
Nevada	\bullet	-		
New Hampshire	-	-	-	-
New Mexico	-	-	-	
New York	-	-	-	-
Ohio	-	-	-	-
Oklahoma	-	-	-	
Oregon	-	-	-	-
Texas	-	-	-	
Utah	-	-	-	\bullet
Washington	-	-	-	-
Wisconsin	-	-	-	-

Quantitative - Quantitative

Ordinal - Quantitative

Summary

Exploratory analysis may combine graphical methods, and statistics

Use questions to uncover more questions

Interaction is essential for exploring large multidimensional datasets

Announcements

A2: Exploratory Data Analysis

Use Tableau to formulate $\&$ answer questions
First steps
Step 1: Pick domain \& data
Step 2: Pose questions
Step 3: Profile data
Iterate as needed
Create visualizations
Interact with data Refine questions

Author a report
Screenshots of most insightful views (10+)
Include titles and captions for each view
Due before class on Jan 27, 2020

Using Space Effectively

26

Topics

Graphs and lines
Selecting aspect ratio
Fitting data and depicting residuals
Graphical calculations
Cartographic distortion

Graphs and Lines

Effective use of space

Which graph is better?

Government payrolls in 1937 [Huff 93]

Aspect ratio

Fill space with data
Don' \ddagger worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

Axis Tick Mark Selection

What are some properties of "good" tick marks?

Axis Tick Mark Selection

Simplicity - numbers are multiples of $10,5,2$
Coverage - ticks near the ends of the data
Density - not too many, nor too few
Legibility - whitespace, horizontal text, size

How to Scale the Axis?

One Option: Clip Outliers

Clearly mark scale breaks

Scale break vs. Log scale

[Cleveland 85]

Scale break vs. Log scale

[Cleveland 85]
Both increase visual resolution

- Log scale - easy comparisons of all data
- Scale break - more difficult to compare across break

Linear scale vs. Log scale

38

Linear scale vs. Log scale

Linear scale

- Absolute change

Log scale

- Small fluctuations
- Percent change
$d(10,20)=d(30,60)$

Semilog graph: Exponential growth

Exponential functions ($\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}$) transform into lines $\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$ Intercepł: $\log (k)$
Slope: $\log (a) m$

$\mathrm{y}=6^{0.5 \mathrm{x}}$, slope in semilog space: $\log (6)^{*} 0.5=0.3891$

Semilog graph: Exponential decay

Exponential functions ($\mathrm{y}=\mathrm{ka}^{\mathrm{mx}}$) transform into lines
$\log (\mathrm{y})=\log (\mathrm{k})+\log (\mathrm{a}) \mathrm{mx}$
Intercept: $\log (k)$
Slope: $\log (a) m$

$y=0.5^{2 x}$, slope in semilog space: $\log (0.5)^{*} 2=-0.602$

Log-Log graph

Power functions ($\mathrm{y}=\mathrm{kx}^{\mathrm{a}}$) transform into lines Example - Steven' s power laws:

$$
S=k I^{p} \rightarrow \log S=\log k+p \log I
$$

44

Selecting Aspect Ratio

Aspect ratio

Fill space with data
Don' \ddagger worry about showing zero

Yearly CO2 concentrations [Cleveland 85]

46

48

Banking to $\mathbf{4 5}^{\circ}$ [Cleveland]

To facilitate perception of trends, maximize the discriminability of line segment orientations

Two line segments are maximally discriminable when avg. absolute angle between them is 45°
Optimize the aspect ratio to bank to 45°

Aspect-ratio banking techniques

Median-Absolute-Slope

$$
\alpha=\operatorname{median}\left|s_{i}\right| R_{x} / R_{y}
$$

Average-Absolute-Orientation Unweighted

$$
\sum_{i} \frac{\left|\theta_{i}(\alpha)\right|}{n}=45^{\circ}
$$

Weighted

$$
\frac{\sum_{i}\left|\theta_{i}(\alpha)\right| l_{i}(\alpha)}{\sum_{i} l_{i}(\alpha)}=45^{\circ}
$$

Average-Absolute-Slope

$$
\alpha=\operatorname{mean}\left|s_{i}\right| R_{x} / R_{y}
$$

Has Closed Form Solution
Max-Orientation-Resolution Global (over all i, i s.t. i=fi)

$$
\sum_{i} \sum_{i}\left|\theta_{i}(\alpha)-\theta_{j}(\alpha)\right|^{2}
$$

Local (over adjacent segments)

$$
\sum\left|\theta_{i}(\alpha)-\theta_{i+1}(\alpha)\right|^{2}
$$

Requires Iterative

Optimization

An alternate approach: Minimize arc length (hold area constant)

Straight line -> 45 deg

Ellipse -> Circle
[Talbot et al, 2011]

56

60

64

Fitting the Data

77

79

Transforming data

How well does curve fit data?

[Cleveland 85]

Transforming data

Residual graph

- Plot vertical distance from best fit curve
- Residual graph shows accuracy of fit

[Cleveland 85]

Graphical Calculations

Nomograms

Sailing: The Rule of Three

Nomograms

1. Compute in any direction; fix $\mathbf{n - 1}$ params and read nth param
2. Illustrate sensitivity to perturbation of inputs
3. Clearly show domain of validity of computation

Slide rule

Model 1474-66 Electrotechnica 18 Scales

Tehnolemn Timisoara Slide Rule Archive http://pubpages.unh.edu/~ jwc/tehnolemn/

95

Lambert's graphical construction

Johannes Lambert used graphs to study the rate of water evaporation as function of temperature [from Tufte 83]

98

Cartographic Distortion

Cartograms: Distort areas

Attendance per State, 1970-1977

Election 2016 map

http://www-personal.umich.edu/~~mejn/election/

Election 2016 map

http://www-personal.umich.edu/~mejn/election/

Election 2016 map

http://www-personal.umich.edu/~mejn/election/

NYT Election 2016 (based on 2012)

134

Statistical map with shading

[Cleveland and McGill 84]

Framed rectangle chart

Rectangular cartogram

American population [van Kreveld and Speckmann 04]

Rectangular cartogram

Native American population [van Kreveld and Speckmann 04]

New York Times Election 2004

New York Times Election 2016

2016 Electoral Map Forecast

The Upshot's forecast for the presidential race, based on the latest national and state polls.
By Josh Katz and ADAM PEARCE UPDATED November 2,2016

Dorling cartogram

Distorting distances

Scale distance by data (airline fare)
[From Cartography, Dent]

London underground

http://www.thetube.com/content/history/map.asp

Comparison to geographic map

Distorted

Undistorted

Visualizing Routes

LineDrive [Agrowle \& Stole 2001]

Hand-drawn route map

LineDrive route map

Summary

- Space is the most important visual encoding
- Geometric properties of spatial transforms support geometric reasoning
- Show data with as much resolution as possible
- Use distortions to emphasize important information

